An Improved Method for the Preparation of Symmetrically Substituted Porphyrins via 2-Methoxymethyl-3,4-disubstituted Pyrrole Derivatives

Hideki KINOSHITA, * Shingo TANAKA, and Katsuhiko INOMATA
Department of Chemistry, Faculty of Science, Kanazawa University, Kanazawa 920

2-Methoxymethylpyrrole derivatives readily available from 2-methylthiomethylpyrroles were found to be readily cyclized to porphyrinogens with formic acid, and subsequent oxidation with $\rm O_2$ affords the corresponding porphyrins in excellent yields.

A number of methods for the preparation of pyrroles have been exploited so ${\rm far}^{1)}$ because they are fundamental constituents of very important substances such as heme, chlorophyll, and vitamin ${\rm B}_{12}$, and some of them have pharmacological activities themselves.

In the previous papers, 2) we have reported convenient synthetic methods for pyrroles employing 3-substituted-propanal ethylene acetal derivatives. Herein we wish to report that 2-methylthiomethylpyrrole derivatives ($\underline{5}$) derived from the 3-(p-toluenesulfonyl)propanal ethylene acetal derivatives ($\underline{3}$) and N-(2-methylthio-1-p-toluenesulfonylethyl)methanesulfonamide ($\underline{1}$) are readily transformed into the corresponding 2-methoxymethylpyrroles ($\underline{7}$), which were found to be excellent precursors of porphyrins (8).

The addition of the carbanion $(\underline{3})$ to the methanimine $(\underline{2})$, produced in situ from $\underline{1}$ and methylmagnesium bromide in the similar manner described in the previous paper, $^{2a)}$ afforded the adduct $(\underline{4})$. Treatment of the crude $\underline{4}$ with a catalytic amount of pyridinium p-toluenesulfonate (PPTS) in dichloroethane gave 2-methyl-thiomethylpyrrole derivatives $(\underline{5})$ in moderate yields as shown in the following scheme.

$$\begin{array}{c} \text{SO}_2\text{Tol-p} \\ \text{MsNH-CH-CH}_2\text{SCH}_3 & \frac{\text{CH}_3\text{MgBr}}{\text{in THF, -100 °C}} & \frac{3}{\text{in THF, -100 - -78 °C}} \\ \frac{1}{2} & \frac{2}{\text{in THF, -100 - -78 °C}} \\ \\ \begin{array}{c} \text{R} & \text{R} \\ \text{SO}_2\text{Tol-p} \\ \text{CH}_2\text{SCH}_3 \\ \text{Ms} \\ \\ & \frac{4}{2} & \frac{50}{\text{E}}, \text{R= PhCH}_2\text{CH}_2, & 44\% \\ \frac{5b}{5c}, \text{R= CH}_2\text{-CH-CH}_2, & 62\% \\ \frac{5c}{5c}, \text{R= CH}_3\text{CH}_2. & 58\% \\ \end{array}$$

1108 Chemistry Letters, 1989

Recently, Eschenmoser⁴⁾ and Ono⁵⁾ have reported the preparation of porphyrins from 2-hydroxymethyl-3,4-disubstituted pyrroles, however, the yields of the resulting porphyrins were rather low. 5) This reminded us the elimination of hydroxymethyl group on α -position of pyrroles as formaldehyde by an acid catalyst. Therefore, an attempt to convert 5 to 2-methoxymethyl-3,4-disubstituted pyrroles (7) was examined to prevent the loss of α -substituent of the pyrroles during the The sulfide (5c) was first oxidized to the corresponding sulfoxide (6c) with sodium metaperiodate followed by treatment with 2M-methanolic KOH to give the desired product (7c) in a quantitative yield. This reaction seems to proceed via an N-demesylation followed by elimination of methanesulfenic acid to form an azafluvene derivative, and an attack of MeOH to afford 7c. Treatment of 7c with an acidic MeOH for 2 h at room temperature gave the corresoponding porphyrinogen [NMR (CDCl₃) δ =1.10 (t, 24H, J=7.62 Hz), 2.40 (q, 16H, J=7.62 Hz), 3.71 (s, 8H), 6.69 (s, 4H); m/z 540 (M^+)] in a quantitative yield. Oxidation of the porphyrinogen under oxygen in dichrolomethane for 3 h at room temperature and the subsequent purification on a silica gel column (CH_2Cl_2) gave the desired 2,3,7,8,12,13,17,18-octaethyl-12H,23H-porphine (8c) in a 96% yield (mp 328 °C). 5)

In the same way, 8a (mp 293 °C, from benzene) and 8b (mp 270 °C, from cyclohexene) were prepared from the corresponding 6a and 6b without isolation of 2-methoxymethylpyrroles (7a,b) and the porphyrinogens in 77% and 93% yields, respectively.

(a) NaIO₄(2 equiv.) in aq. MeOH, r. t. (b) 2M-KOH in MeOH, reflux. 10 min (C) HCO₂H/MeOH(2/1) r. t. (d) O₂ , in CH₂Cl₂

Consequently, 2-methoxymethyl-3,4-disubstituted pyrrole derivatives proved to be very useful intermediates for porphyrin synthesis.

References

- A. Gossauer, "Die Chemie der Pyrrole," Springer-Verlag, Berlin (1974); R. A. Jones and G. P. Bean, "The Chemistry of Pyrroles," Academic Press, New York (1977).
- 2) a) H. Kinoshita, K. Inomata, M. Hayashi, T. Kondoh, and H. Kotale, Chem. Lett., 1986, 1033; b) K. Inomata, H. Suhara, H. Kinoshita, and H. Kotake, ibid., 1988, 813.
- 3) The reagent 1 was prepared from methanesulfonamide (1 equiv.), methylthioacetaldehyde dimethyl acetal (1 equiv.), and p-toluenesulfenic acid (1.5 equiv.) by stirring at room temperature for 4 d in the presence of p-toluenesulfonic acid (0.2 equiv.) in dichloromethane. (71% yield, mp 121-122 °C from EtOH).
- 4) G. Ksander, G. Bold, R. Lattmann, C. Lehmann, T. Früh, Y. B. Xiang, K. Inomata, H. P. Buser, J. Schreiber, E. Zass, and A. Eschenmoser, Helv. Chim. Acta, 70, 1115 (1987); M. Ono, R. Lattmann, K. Inomata, C. Lehmann, T. Früh, and A. Eschenmoser, Croatica Chem. Acta, 58, 627 (1985).
- 5) N. Ono and K. Maruyama, Chem. Lett., 1988, 1511.

(Received February 27, 1989)